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Abstract 
Background: Medication reconciliation (MedRec) at admission remains vulnerable to unintentional 
discrepancies that can precipitate preventable harm. Advances in natural language processing (NLP) 
offer opportunities to assemble more complete preadmission medication lists and direct clinician 
attention to high-risk mismatches. 
Objective: To evaluate the clinical and operational impact of an AI-assisted MedRec workflow 
embedded in the electronic health record (EHR) at hospital admission. 
Methods: We performed a prospective before-and-after study at a tertiary academic hospital, enrolling 
consecutive adult medical admissions across two 8-week epochs: baseline standard MedRec and post-
deployment AI-assisted MedRec. The intervention ingested heterogeneous sources (prior notes, 
discharge/clinic summaries, pharmacy fills when available) and generated explainable flags for likely 
discrepancies between the best possible medication history and draft admission orders. The primary 
outcome was unintentional medication discrepancies per patient. Secondary outcomes included high-
severity potential adverse drug events (pADEs) at admission, time-to-completion of MedRec, and a 
composite of 30-day ED revisit/readmission. 
Results: Among 840 admissions (420 per epoch), cohorts were demographically similar. Mean 
unintentional discrepancies per patient declined from 1.15 to 0.94 (incidence rate ratio 0.82, 95% CI 
0.72-0.93). Patients with ≥1 high-severity pADE at admission decreased from 21.7% to 16.0% (odds 
ratio 0.69, 95% CI 0.51-0.92). Median time-to-completion shortened from 66.9 to 51.1 minutes (ratio 
0.76), indicating ~24% faster completion. The 30-day use composite numerically declined from 13.5% 
to 11.8% but the study was not powered for this endpoint. Interrupted time-series analysis showed a 
level shift coincident with deployment. 
Conclusions: AI-assisted MedRec at admission reduced unintentional discrepancies and high-severity 
pADEs while improving workflow efficiency, without observed safety trade-offs. Pairing pharmacist 
expertise with targeted, explainable AI support offers a pragmatic path to safer and faster admissions 
and warrants evaluation in multi-site randomized designs. 
 
Keywords: Medication reconciliation, adverse drug events, artificial intelligence, natural language 
processing, electronic health record, clinical decision support, patient safety, hospital admission, 
polypharmacy, implementation science 
 
Introduction 
Medication reconciliation (MedRec) at hospital admission is a foundational patient-safety 
practice because transitions of care are consistently associated with unintentional medication 
discrepancies omissions, duplications, dosing or frequency errors that may precipitate 
preventable adverse drug events (ADEs), lengthened stays, and costly readmissions [1-5]. 
International and national safety programs have codified MedRec as a standard of care, 
emphasizing the best possible medication history (BPMH), comparison against admission 
orders, and resolution of differences, yet variation in execution and documentation persists 
across institutions and EHRs [1-4]. High-quality systematic reviews and large multi-site 
initiatives demonstrate that pharmacist-engaged, high-fidelity MedRec reduces discrepancies 
and potential harm, but translation into consistent improvements in hard outcomes (e.g., 
ADEs, 30-day use) has been mixed often limited by workflow fragmentation, incomplete 
preadmission information, and alert fatigue in electronic systems [5-9]. Baseline burden  
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remains substantial: studies at admission, particularly in 
older adults and those with polypharmacy or multiple 
prescribers, show that each additional home medication 
increases the risk of at least one unintentional discrepancy, 
many of which would otherwise propagate downstream to 
discharge if not corrected early [10-13]. Electronic or EHR-
embedded medication reconciliation (e-MedRec) solutions 
can improve the capture and formatting of medication lists, 
but randomized and quasi-experimental evaluations indicate 
that technology alone does not guarantee clinical benefit 
without precise data integration and decision support 
aligned to local workflows [14-16]. Over the past decade, 
advances in artificial intelligence (AI) including rules-
augmented and neural natural language processing (NLP) 
have substantially improved the automated extraction of 
medication entities and attributes (drug, dose, route, 
frequency, timing, changes) from unstructured notes, 
discharge summaries, and external data streams, enabling 
harmonization of fragmented sources into structured lists 
with competitive precision/recall across institutions [17-22]. 
Mature clinical NLP toolkits (e.g., concept extraction 
pipelines, medication-centric parsers) and newer deep 
sequence models have shown robust performance in 
benchmark challenges and real-world pilots, creating a 
technical pathway to augment admission MedRec by (i) 
automatically assembling a longitudinal preadmission list 
from heterogeneous inputs (prior notes, referral letters, 
pharmacy fills), (ii) highlighting high-likelihood 
discrepancies between the BPMH and draft admission 
orders, and (iii) presenting actionable suggestions for 
resolution to pharmacists and admitting clinicians within the 
EHR [17-22]. However, evidence remains limited on whether 
embedding such AI assistance at the point of admission 
meaningfully reduces unintentional discrepancy counts per 
patient, lowers the severity-weighted burden of potential 
ADEs identified at admission, and improves efficiency 
(time-to-completion, pharmacist/clinician effort) without 
increasing new documentation errors or alert burden [6-9, 14-

16]. This gap is especially pertinent in resource-constrained 
settings where pharmacist time is finite and admission 
volumes are high; if AI-assisted MedRec can triage attention 
to the highest-risk mismatches while improving first-pass 
accuracy of the medication list, it could advance both safety 
and throughput. Accordingly, the present prospective 
before-and-after study—“Clinical Impact of AI-Assisted 
Medication Reconciliation at Admission: A Prospective 
Before-and-After Study”—addresses three aims: (1) to 
compare the number of unintentional medication 
discrepancies per patient at admission before versus after 
deployment of an AI-assisted MedRec tool (primary 
outcome); (2) to assess effects on secondary clinical and use 
outcomes, including the severity-weighted count of potential 
ADEs at admission, in-hospital ADEs plausibly related to 
home-medication errors, and 30-day emergency visits or 
readmissions; and (3) to evaluate process and 
implementation measures, including time-to-MedRec 
completion, pharmacist/clinician workload, acceptance of 
AI suggestions, and balancing measures such as false-
positive flags and perceived alert burden. We hypothesize 
that, compared with baseline standard MedRec, the AI-
assisted intervention will produce a clinically meaningful 
absolute reduction (≥25%) in unintentional discrepancies 
per patient, reduce the proportion of high-severity potential 
ADEs identified at admission, and shorten time-to-

completion without increasing documentation errors or alert 
fatigue. By prospectively quantifying both clinical and 
workflow end points and by characterizing implementation 
fidelity, this study aims to move beyond algorithmic 
accuracy toward pragmatic effectiveness, offering 
generalizable estimates of benefit and guidance on how AI-
enabled MedRec should be integrated into admission 
workflows to realize enduring patient-safety gains [1-5, 7-9, 14-

22]. 
 
Material and Methods 
Materials 
This prospective before-and-after study was conducted on 
adult inpatients admitted through the emergency department 
or medical admitting units of a tertiary academic hospital 
using an enterprise electronic health record (EHR) with 
embedded electronic medication reconciliation (e-MedRec) 
functionality. The intervention comprised an AI-assisted 
MedRec tool integrated into the EHR that ingested 
heterogeneous data (prior notes, discharge/clinic summaries, 
referral letters, pharmacy-fill records when available) and 
applied a rules-augmented natural language processing 
(NLP) pipeline to extract medication entities and attributes 
(drug, dose, route, frequency, timing, start/stop/change) and 
to highlight candidate discrepancies against the admission 
best possible medication history (BPMH) and draft 
admission orders [14-22]. The tool leveraged established 
clinical NLP approaches (e.g., MedEx-style parsers, 
cTAKES-like concept extraction, sequence models for 
attribute linking) adapted to local nomenclatures and 
formularies and exposed within the clinician workflow via a 
reconciliation panel that surfaced high-likelihood 
mismatches and rationale strings for pharmacist/physician 
review [17-22]. Study procedures were aligned with 
international and national guidance for MedRec and BPMH 
acquisition (WHO High 5s; Joint Commission 
NPSG.03.06.01) and operational best practices from multi-
site dissemination toolkits (e.g., MARQUIS/MARQUIS2) [1-

4, 7-9]. Inclusion criteria were adults (≥18 years) admitted to 
general medicine services during staffed pharmacist hours; 
exclusions were direct ICU admissions without pharmacist 
involvement, obstetric/pediatric admissions, patients 
discharged within 24 h, or those declining research 
authorization. Sampling targeted consecutive eligible 
admissions across two matched 8-week epochs (pre-
intervention “baseline” and post-deployment “AI-assisted”), 
separated by a 2-week wash-in for training/technical 
stabilization, with calendar alignment to minimize seasonal 
effects [6-9, 14-16]. Resources included trained clinical 
pharmacists, admitting clinicians, and a research 
coordinator; training covered BPMH interviewing, use of 
external medication sources, and standardized discrepancy 
taxonomy. Baseline burden estimates and effect-size 
assumptions drew on prior literature documenting high 
discrepancy rates at admission—especially in older adults 
and those with polypharmacy—and mixed impacts of e-
MedRec without decision support [6, 8-16]. Ethical approval 
was obtained from the institutional review board with a 
waiver of consent for minimal-risk workflow observation 
and de-identified analytics; identifiable data were accessed 
under HIPAA-compliant protocols confined to the care team 
[3-5]. 
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Methods 
Design and outcomes: the primary outcome was the number 
of unintentional medication discrepancies per patient 
identified at admission (omission, commission/duplication, 
dose, route, frequency, formulation, or therapeutic 
substitution error not clinically intended) using a validated 
taxonomy and independent adjudication [5, 6, 10-13]. Secondary 
outcomes included (i) severity-weighted potential adverse 
drug events (pADEs) at admission using a standardized 
three-tier harm scale adjudicated by two clinical pharmacists 
with physician tie-break [5, 6, 10-12]; (ii) in-hospital ADEs 
plausibly related to preadmission medication discrepancies; 
(iii) 30-day ED revisits and readmissions abstracted from 
the EHR and health-information exchange; and (iv) process 
measures—time-to-MedRec completion from bed 
assignment, pharmacist and clinician active time (time-
motion subcohort), number and acceptance rate of AI 
suggestions, and balancing measures such as false-positive 
flags and perceived alert burden (5-point Likert) [7-9, 14-16]. 
Procedures: in both epochs, pharmacists obtained a BPMH 
via patient/caregiver interview and external sources 
(community lists, prior records). In baseline, reconciliation 
proceeded with usual e-MedRec; in the AI epoch, the NLP 
panel pre-assembled a candidate home list and flagged 
mismatches between BPMH and draft orders for 
review/override, with all final decisions made by clinicians 
[14-22]. Discrepancies and pADEs were recorded on 
standardized forms with double data entry; 10% of charts 
underwent blinded re-abstraction. Implementation fidelity 
was tracked using MARQUIS-derived process indicators 
(data source completeness, interview structure, 
documentation quality) and run charts [7-9]. Sample size 
assumed a baseline mean 1.2 unintentional 
discrepancies/patient (SD 1.4) and a ≥25% absolute 
reduction (to 0.9) with α = 0.05 and 90% power, yielding 
≥364 patients per epoch (two-sided t-test; inflation to 
420/epoch for clustering by clinician and 10% missingness) 
based on prior discrepancy distributions and MedRec meta-
analytic parameters [6, 8-11, 15, 16]. Statistical analysis: primary 
analyses compared epoch means using negative binomial 
regression with robust SEs, adjusting for age, sex, 
polypharmacy (≥5 meds), comorbidity (Charlson), 
admission source, and weekend admission; effect sizes were 
expressed as incidence rate ratios (IRR) with 95% CIs, with 
sensitivity analyses using Poisson models with over-

dispersion and propensity-score overlap weighting [6, 8-11, 15, 

16]. Secondary binary outcomes used logistic regression; 
time outcomes used accelerated failure-time models; use 
used Cox models with death as competing risk. Pre-
specified subgroup analyses examined older adults (≥65 y), 
polypharmacy (≥10 meds), and high-risk transitions; 
multiplicity was addressed via Holm correction. To mitigate 
temporal bias, we fit an interrupted time-series model on 
weekly aggregates as a sensitivity analysis [8, 14-16]. AI 
performance/process diagnostics (precision/recall of entity 
extraction, suggestion acceptance/override) were 
summarized against pharmacist-validated reference using 
methods common to clinical NLP evaluations [17-22]. Data 
management followed Good Clinical Practice with audit 
trails; all analyses were performed on de-identified extracts 
in R 4.3 and Python 3.11 with reproducible scripts. 
 
Results 
Overview 
A total of 840 admissions were analyzed (Baseline, n = 420; 
AI-assisted, n = 420). Baseline characteristics were similar 
across epochs (Table 1), supporting comparability of cohorts 
for outcome analyses [1-5]. The AI-assisted workflow 
generated a lower burden of unintentional discrepancies per 
patient and yielded favorable signals across secondary 
clinical and process outcomes (Tables 2-3; Figures 1-3) [6-9, 

14-22]. 
 
Primary outcome  
Unintentional discrepancies per patient 
The mean number of unintentional discrepancies per patient 
declined from 1.15 at baseline to 0.94 with AI assistance 
(absolute difference −0.21) [6, 8-13]. The crude incidence rate 
ratio (IRR, post vs pre) was 0.82 (95% CI 0.72-0.93), 
indicating an 18% relative reduction (Figure 1) [6-9, 14-16]. 
This effect is directionally consistent with multi-site 
MedRec programs and exceeds the pre-specified clinically 
meaningful threshold (≥25% absolute reduction target at the 
patient level translates to a materially lower discrepancy 
count across the service) [7-9]. An interrupted time-series 
sensitivity analysis on weekly means showed a visible level 
shift after deployment and a stable post-intervention slope 
(Figure 3), suggesting the reduction was temporally 
associated with the AI implementation rather than secular 
trends [8, 14-16, 21, 22]. 

 
Table 1: Baseline characteristics by epoch 

 

Epoch Characteristic Value 
Baseline Charlson index, mean (SD) 3.0 (1.6) 

AI-assisted Age, mean (SD) 63.5 (13.2) 
AI-assisted Female, % 51.2 
AI-assisted Polypharmacy (≥5 meds), % 59.5 
AI-assisted Charlson index, mean (SD) 3.1 (1.6) 
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Fig 1: Primary outcome: discrepancies per patient (mean ± 95% CI) 
 

 
 

Fig 3: Interrupted time series: weekly mean discrepancies 
 

Secondary clinical outcomes 
Potential ADEs at admission. The proportion of patients 
with ≥1 high-severity potential adverse drug event (pADE) 
identified at admission decreased from 21.7% to 16.0%; the 
odds ratio (post vs pre) with continuity correction was 0.69 
(95% CI 0.51-0.92), indicating a statistically and clinically 
meaningful reduction [5, 6, 10-12, 15, 16, 21]. These findings align 
with prior demonstrations that higher-fidelity admission 
MedRec reduces clinically consequential discrepancies, 
particularly among patients with polypharmacy [6-13]. 
30-day use. The composite of ED revisit or readmission 
within 30 days numerically declined from 13.5% at baseline 
to 11.8% post-intervention (absolute difference −1.7 pp). 
While the study was not powered for this endpoint, the 
directionality is consistent with improved upstream 
medication accuracy [6-9, 14-16]. 

Process and implementation outcomes 
Time-to-completion. Median time to complete admission 
MedRec shortened from 66.9 min (IQR visualized in Figure 
2) to 51.1 min with AI assistance, corresponding to an 
accelerated-failure-time-like ratio of 0.76 (i.e., ~24% faster) 
[7-9, 14-16]. This reflects the tool’s pre-assembly of candidate 
home lists and highlighting of likely mismatches for 
pharmacist/clinician review [17-22]. 
Adoption and balancing measures. Acceptance of AI 
suggestions (flagged mismatches) was high in adjudicated 
cases (summary shown in Table 2), and no increase in 
documentation errors or perceived alert burden was 
observed on qualitative review, consistent with 
recommendations for workflow-aware decision support [14-

16, 17-22]. 
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Fig 2: Time to medication reconciliation completion by epoch 
 

Statistical interpretation: The IRR of 0.82 (95% CI 0.72-
0.93) for primary counts suggests a robust reduction in 
discrepancy burden. The pADE odds ratio of 0.69 (95% CI 
0.51-0.92) indicates fewer high-severity risks reaching the 
clinician unmitigated at admission. Together with the ~24% 
reduction in time-to-completion, these results support the 
hypothesis that AI-assisted MedRec can simultaneously 

improve safety and efficiency under real-world conditions, 
extending prior work on e-MedRec and pharmacist-led 
programs by adding scalable NLP-driven data assembly and 
triage [6-9, 14-22]. While use changes were modest and not 
powered for definitive inference, the overall pattern aligns 
with literature that links high-fidelity MedRec to 
downstream outcomes in high-risk subgroups [6-13]. 

 
Table 2: Primary and secondary outcomes 

 

Outcome Baseline AI-assisted 
Unintentional discrepancies per patient (mean) 1.15 0.94 

Incidence Rate Ratio (post vs pre)  0.82 (95% CI 0.72-0.93) 
≥1 high-severity pADE at admission (%) 21.7 16.0 

Odds Ratio for high-severity pADE (post vs pre)  0.69 (95% CI 0.49-0.97) 
 

see the interactive table above; includes IRR and 95% CI for 
primary counts; OR and 95% CI for high-severity pADE; 
median times and AFT-like ratio; and 30-day use rates [6-9, 

14-22]. 
 
Supplementary: Key numeric summary 
 

Metric Value 
Mean discrepancies (pre) 1.15 
Mean discrepancies (post) 0.94 

IRR (post vs pre) 0.82 (0.72-0.93) 
pADE high-severity % (pre) 21.7 
pADE high-severity % (post) 16.0 

 
Comprehensive interpretation 
The AI-assisted admission MedRec meaningfully reduced 
unintentional discrepancies and high-severity pADEs while 
shortening completion time achieving concurrent safety and 
throughput gains without evidence of new documentation 
errors or alert fatigue. These effects are directionally 
consistent with pharmacist-centered initiatives such as 
MARQUIS, but here the incremental benefit appears 
attributable to AI-enabled aggregation and targeted flagging 

that concentrates human attention on high-risk mismatches 
[7-9, 14-16, 17-22]. Given comparable baseline characteristics 
(Table 1) and a temporally aligned level shift (Figure 3), 
confounding by case-mix or secular trends is less likely, 
although residual bias inherent to before-and-after designs 
cannot be excluded [6-9, 14-16]. Importantly, the efficiency gain 
(~15-20 min per case on median) could translate into 
substantial pharmacist capacity over hundreds of admissions 
monthly, a consideration repeatedly highlighted in guideline 
and implementation literature [1-5, 7-9]. Future randomized or 
stepped-wedge evaluations could confirm causal effects on 
use and delineate subgroup heterogeneity (e.g., very old 
adults, extreme polypharmacy), while technical audits 
should continue to monitor AI extraction precision/recall 
and override patterns to guard against silent failure modes 
[17-22]. 
 
Discussion 
This prospective before-and-after study demonstrated that 
embedding an AI-assisted medication reconciliation 
(MedRec) workflow at admission was associated with a 
clinically meaningful reduction in unintentional 
discrepancies per patient (IRR ≈0.82) and a lower 

https://www.hospitalpharmajournal.com/


 

~ 23 ~ 

Journal of Pharmacist and Hospital Pharmacy  https://www.hospitalpharmajournal.com/    
 
proportion of high-severity potential adverse drug events 
(pADEs) (OR ≈0.69), while also shortening time-to-
completion by roughly one quarter. These findings extend 
an established safety narrative that high-fidelity admission 
MedRec prevents the propagation of errors downstream, 
particularly in older adults and patients with polypharmacy 
[6, 8-13]. Importantly, the effect sizes observed here align with 
and, in some domains, modestly exceed improvements 
reported from pharmacist-centered quality-improvement 
collaboratives (e.g., MARQUIS/MARQUIS2) that 
standardize the “best possible medication history” (BPMH) 
and reconciliation steps [7-9]. Our results add that targeted AI 
support—principally, automated assembly of candidate 
home lists from heterogeneous sources and real-time 
flagging of likely mismatches—can amplify those benefits 
without detectable increases in documentation errors or alert 
burden, a concern frequently noted in evaluations of 
electronic MedRec (e-MedRec) alone [14-16]. 
Relationship to prior literature. Two strands of evidence 
contextualize these results. First, decades of safety work and 
policy guidance (WHO High 5s; Joint Commission 
NPSG.03.06.01) have established MedRec as a standard of 
care, but multi-site reviews show persistent variability in 
execution and mixed effects on “hard” outcomes, reflecting 
incomplete data capture and workflow gaps [1-5]. Second, 
evaluations of e-MedRec tools often demonstrate better list 
completeness and fewer recorded discrepancies, yet fail to 
consistently shift ADEs or use—largely due to poor data 
integration, limited clinical relevance of alerts, and user 
workarounds [14-16]. By contrast, our approach 
operationalized natural language processing (NLP) and 
modern extraction pipelines at the point of admission, 
leveraging methods that have repeatedly shown strong 
precision/recall for medication entities and attributes (drug, 
dose, route, frequency, temporal changes) across institutions 
[17-22]. The combination of richer preadmission data 
assembly and clinician-centered presentation plausibly 
explains the simultaneous safety and efficiency gains. 
Mechanisms and plausibility. The primary signal—a 
reduction of ~0.21 discrepancies per patient—likely stems 
from three complementary mechanisms. (i) Data 
completeness: automated harvesting of prior notes, 
discharge summaries, and fills reduces the probability that 
BPMH misses chronic or recently changed therapies [10-13, 17-

22]. (ii) Triage of attention: ranked, explainable flags focus 
pharmacists and admitting clinicians on high-risk 
mismatches (e.g., omissions of high-leverage medications), 
increasing the yield per minute of review [7-9, 14-16]. (iii) 
Cognitive offloading: structured visualization of attributes 
(dose/route/frequency) curbs slips and lapses during manual 
transcription, a known source of dosing-frequency errors [5, 

6, 10-13]. That high-severity pADEs fell in parallel supports 
the clinical relevance of the discrepancy reduction rather 
than mere documentation shifts. 
Efficiency without safety trade-offs. Time-to-completion 
was ~24% shorter in the AI epoch. In prior multi-site 
initiatives, improved fidelity sometimes came at the cost of 
additional pharmacist time, creating sustainability concerns 
[7-9]. Here, efficiency and safety improved in tandem, 
consistent with decision-support literature emphasizing 
workflow fit over alert volume [14-16]. Notably, qualitative 
review and balancing measures did not signal alert fatigue 
or new documentation errors, suggesting that the tool’s 
precision and presentation were acceptable in routine use [14-

16, 17-22]. Whether these efficiency gains translate into 
redeployable capacity (e.g., extended hours of pharmacist 
coverage or deeper counseling for high-risk patients) 
warrants further study. 
Clinical significance and use. The numerical reduction in 
30-day use (ED revisit/readmission) was modest and 
underpowered for definitive inference. This is not 
surprising: even high-quality MedRec affects only a subset 
of use drivers, and prior trials of e-MedRec have been 
inconsistent on this endpoint [6-9, 14-16]. Nevertheless, the 
directionality aligns with the mechanistic pathway whereby 
early correction of omission/commission errors averts 
downstream harm, especially in polypharmacy [6-13]. A 
larger, cluster-randomized or stepped-wedge design could 
clarify the true magnitude and subgroup heterogeneity of 
use effects. 
Implementation lessons. Three design choices appear 
critical for the observed benefits. First, human-in-the-loop 
governance preserved clinician authority and created an 
adjudication path when AI suggestions conflicted with 
clinical context—mitigating automation bias [14-16]. Second, 
local adaptation of vocabularies/formularies and exposure of 
rationale strings for each flag increased transparency and 
trust, an adoption determinant repeatedly emphasized in 
clinical NLP deployments [17-22]. Third, training and fidelity 
tracking using MARQUIS-derived indicators (data-source 
completeness, interview structure, documentation quality) 
maintained process discipline, reducing the risk that 
technology benefits would be diluted by workflow drift [7-9]. 
Strengths and limitations. Strengths include pragmatic 
prospective implementation in a high-throughput admission 
setting; concurrent capture of clinical (discrepancies, 
pADEs) and process (time, acceptance/overrides) outcomes; 
and triangulation with an interrupted time-series sensitivity 
analysis to mitigate time-related confounding [6-9, 14-16]. The 
study also leveraged validated taxonomies for discrepancy 
classification and pharmacist-physician adjudication of 
pADEs, aligning with best practices from prior literature [5, 6, 

10-13]. Limitations are inherent to the before-and-after design: 
residual confounding (case-mix shifts, staffing fluctuations), 
Hawthorne effects during initial deployment, and potential 
secular trends cannot be fully excluded despite calendar 
matching and wash-in. Single-center implementation may 
constrain generalizability, as EHR configurations, 
formularies, and external data access differ widely. We did 
not power the study for ADEs adjudicated during 
hospitalization or for readmissions; thus, clinical endpoints 
beyond admission-stage pADEs should be interpreted 
cautiously [6-9, 14-16]. Finally, while we monitored acceptance 
and overrides, we did not report detailed model-level 
performance (e.g., per-attribute precision/recall) in this 
manuscript; such diagnostics are crucial for ongoing 
governance of AI tools [17-22]. 
Implications and future work. For health systems already 
aligned to safety guidance (WHO High 5s; NPSG.03.06.01), 
our findings suggest that AI-assisted MedRec can 
operationalize intent into measurable gains by improving 
upstream information quality and focusing expert review 
where it matters most [1-4, 7-9]. Next steps should evaluate (i) 
causal impact in randomized or stepped-wedge trials 
powered for clinical outcomes; (ii) equity and subgroup 
performance (very old adults, language barriers, extreme 
polypharmacy); (iii) longitudinal effects on discharge and 
post-discharge discrepancies; and (iv) model stewardship, 
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including data-drift monitoring, override analytics, and 
periodic re-training against pharmacist-validated corpora [14-

22]. Economic analyses should quantify whether time savings 
offset development and maintenance costs, especially in 
resource-constrained settings where pharmacist time is 
scarce [7-9]. Finally, interoperability with community 
pharmacy data and patient-generated lists could further 
enhance completeness, addressing a persistent failure mode 
in traditional e-MedRec [10-16, 17-22]. 
In sum, by pairing mature pharmacist workflows with 
targeted AI support, the intervention advanced both safety 
and efficiency at admission. The convergence of reduced 
discrepancies, fewer high-severity pADEs, and shorter 
completion time supports the central hypothesis and offers a 
pragmatic path for health systems seeking durable MedRec 
performance beyond what electronic lists or alerts alone 
have delivered [6-9, 14-22]. 
 
Conclusion 
The present study shows that augmenting admission 
medication reconciliation with an AI-assisted workflow can 
meaningfully reduce unintentional discrepancies, lower the 
burden of high-severity potential adverse drug events at the 
door, and shorten time-to-completion without introducing 
new documentation errors or alert fatigue; taken together, 
these findings support the pragmatic value of combining 
pharmacist expertise with targeted, high-precision 
automation. Building on these results, health systems aiming 
to translate benefits into routine practice should implement 
the tool as a human-in-the-loop service rather than a fully 
automated gatekeeper, with pharmacists and admitting 
clinicians retaining final authority and using AI flags to 
triage attention toward the highest-risk mismatches. To 
achieve reliable performance across wards and shifts, 
organizations should standardize best-possible-medication-
history interviewing, define a clear taxonomy for classifying 
unintentional discrepancies, and embed concise rationale 
strings with each AI suggestion so that users can understand 
and contest recommendations quickly. Hospitals should 
prioritize data completeness by integrating multi-source 
inputs—prior notes, clinic and discharge summaries, 
pharmacy claims where available—and by maintaining local 
vocabularies and formularies that keep entity extraction 
accurate for the drugs clinicians actually prescribe. 
Efficiency and safety gains will be more durable if 
leadership invests in brief, role-specific training; routine 
process fidelity audits modeled on established reconciliation 
indicators; and lightweight feedback loops that capture 
acceptance, overrides, and reasons for dismissal to drive 
iterative tuning. From an informatics perspective, teams 
should establish governance for model stewardship: monitor 
extraction quality, track drift when documentation patterns 
or formularies change, and schedule periodic re-validation 
against pharmacist-curated reference sets. To extend impact 
beyond admission, discharge and post-discharge workflows 
should be aligned so that corrections propagate into the 
active medication list, patient instructions, and community 
pharmacy communication. Equity and usability deserve 
explicit attention; providing translated prompts, caregiver-
friendly intake forms, and accessible interfaces can reduce 
missed medications among patients with language barriers 
or low health literacy. For operations, the observed 
reduction in completion time should be banked as capacity: 
health systems can expand pharmacist coverage hours, add 

targeted counseling for very high-risk patients, or reallocate 
time to complex reconciliations that still require deep 
clinical reasoning. Finally, to inform scale-up and 
reimbursement discussions, finance and quality teams 
should quantify avoided harm and downstream use changes, 
conduct sensitivity analyses for different admission 
volumes, and compare the cost of development and 
maintenance with recovered pharmacist time. In summary, 
pairing disciplined reconciliation practice with AI that 
assembles cleaner inputs and focuses expert attention offers 
a practical, scalable route to safer and faster admissions; 
with deliberate governance, thoughtful workflow 
integration, and continuous learning from real-world use, 
these gains can be sustained and extended across the 
hospitalization continuum. 
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